Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Dis Aquat Organ ; 157: 107-112, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38546194

RESUMO

In the 1980s, a mass die-off of the long-spined sea urchin Diadema antillarum occurred on Florida and Caribbean coral reefs. D. antillarum populations largely did not recover, and in 2022, remaining populations experienced another mass mortality event. A ciliate most similar to Philaster apodigitiformis was identified as the causative agent of the 2022 event, which was named D. antillarum scuticociliatosis (DaSc). Here, we investigated possible treatments for this pathogen. We tested the efficacy of 10 compounds at final concentrations of 100, 50, 25, 12.5, 6.25, and 3.13 µM, or a 10-fold serial dilution series, against ciliates cultured from an infected D. antillarum specimen. Of the tested compounds, 8 induced 100% ciliate mortality at some dose after 24 h. The most effective (defined as those requiring the lowest dose to induce 100% ciliate mortality) were quinacrine and tomatine (both effective at 12.5 µM), followed by furaltadone and plumbagin (25 µM), bithionol sulfoxide and 2'4' dihydroxychalcone (50 µM), and oxyclozanide and carnidazole (100 µM). Toltrazuril and a commercially available anticiliate product containing naphthoquinones were not effective at any dose tested. Shortened (15 min) time trials were performed using ciliate cultures reared in natural seawater to better reflect natural environmental conditions, and revealed that 2 of the compounds (quinacrine and tomatine) induced 100% ciliate mortality at 100 µM, with tomatine also effective at 50 µM. This study identified several treatments effective against the causative agent of DaSc in vitro, but their toxicity and utility in vivo remain unknown.


Assuntos
Cilióforos , Tomatina , Animais , Ouriços-do-Mar , Recifes de Corais , Quinacrina
2.
Food Chem ; 447: 138937, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38492295

RESUMO

Owing to the lack of selection and limited intelligence in mechanical picking, some immature tomatoes that contain alkaloids are thrown away. Tomatine alkaloids are steroidal alkaloids naturally present in Solanaceae plants, which are distributed in small amounts in immature tomato fruits and decrease as the fruits ripen. Tomato glycoalkaloids are harmful to human health. However, in small quantities, there is some evidence that these compounds might be beneficial, as other non-antioxidant bioactivities. This article considers recent research on the biological effects of tomato glycoalkaloids in immature tomatoes, providing reference value for the potential development of these compounds.


Assuntos
Alcaloides , Solanaceae , Solanum lycopersicum , Humanos , Tomatina/toxicidade , Alcaloides/toxicidade , Extratos Vegetais/farmacologia
3.
Int Immunopharmacol ; 130: 111732, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38402834

RESUMO

Fulminant hepatic failure (FHF) is the terminal phase of acute liver injury, which is characterized by massive hepatocyte necrosis and rapid hepatic dysfunction in patients without preexisting liver disease. There are currently no therapeutic options for such a life-threatening hepatic failure except liver transplantation; therefore, the terminal phase of the underlying acute liver injury should be avoided. Tomatidine (TOM), asteroidal alkaloid, may have different biological activities, including antioxidant and anti-inflammatory effects. Herein, the lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced FHF mouse model was established to explore the protective potential of TOM and the underlying mechanisms of action. TOM pretreatment significantly inhibited hepatocyte necrosis and decreased serum aminotransferase activities in LPS/D-GalN-stimulated mice. TOM further increased the level of different antioxidant enzymes while reducing lipid peroxidation biomarkers in the liver. These beneficial effects of TOM were shown to be associated with targeting of NF-κB signaling pathways, where TOM repressed NF-κB activation and decreased LPS/D-GalN-induced TNF-α, IL-6, IL-1ß, and iNOS production. Moreover, TOM prevented LPS/D-GalN-induced upregulation of Keap1 expression and downregulation of Nrf2 and HO-1 expression, leading to increased Nrf2-binding activity and HO-1 levels. Besides, TOM pretreatment repressed LPS/D-GalN-induced upregulation of proliferating cell nuclear antigen (PCNA) expression, which spared the hepatocytes from damage and subsequent repair following the LPS/D-GalN challenge. Collectively, our findings revealed that TOM has a protective effect on LPS/D-GalN-induced FHF in mice, showing powerful antioxidant and anti-inflammatory effects, primarily mediated via modulating Keap1/Nrf2/HO-1 and NF-κB/TNF-α/IL-6/IL-1ß/iNOS signaling pathways.


Assuntos
Falência Hepática Aguda , NF-kappa B , Tomatina/análogos & derivados , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Transdução de Sinais , Fígado , Estresse Oxidativo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Necrose/metabolismo , Galactosamina/farmacologia
4.
Mol Genet Genomics ; 299(1): 14, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400847

RESUMO

Sepsis-induced acute lung injury (ALI) is a life-threatening medical condition with high mortality and morbidity. Autophagy is involved in the pathophysiological process of sepsis-induced ALI, including inflammation, which indicates that regulating autophagy may be beneficial for this disease. Tomatidine, a natural compound abundant in unripe tomatoes, has been reported to have anti-inflammatory, anti-tumorigenic, and lipid-lowering effects. However, the biological functions and mechanisms of tomatidine in sepsis-induced ALI remain unknown. The principal objective of this study was to investigate the effect of tomatidine on sepsis-induced ALI. Cecal ligation and puncture (CLP) was used to induce septic lung injury in mice, and 10 mg/kg tomatidine was intraperitoneally injected into mice 2 h after the operation. The results of hematoxylin and eosin staining and assessment of lung edema and total protein levels in bronchoalveolar lavage fluid (BALF) demonstrated that tomatidine alleviated CLP-induced severe lung injuries such as hemorrhage, infiltration of inflammatory cells, and interstitial and alveolar edema in mice. Additionally, the levels of proinflammatory cytokines in BALF and lung tissues were measured by enzyme-linked immunosorbent assay (ELISA), and the results showed that tomatidine inhibited CLP-induced inflammatory damage to lungs. Moreover, the results of western blotting showed that tomatidine promoted autophagy during CLP-induced ALI. Mechanistically, immunofluorescence staining and western blotting were used to measure the protein levels of TLR4, phosphorylated NF-κB, phosphorylated IκBα, and phosphorylated MAPKs, showing that tomatidine inactivated NF-κB and MAPK signaling in lung tissues of CLP-induced ALI mice. In conclusion, tomatidine exerts protective effects against sepsis-induced severe damage to the lungs by inhibiting inflammation and activating autophagy in CLP-treated mice through inactivating the NF-κB and MAPK pathways, which may be an effective candidate for treating septic ALI.


Assuntos
Lesão Pulmonar Aguda , Sepse , Tomatina/análogos & derivados , Animais , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Pulmão , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Inflamação/tratamento farmacológico , Sepse/complicações , Sepse/tratamento farmacológico , Autofagia , Edema
5.
Molecules ; 29(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257256

RESUMO

Tomatidine (TO) is a natural narrow-spectrum antibiotic acting on the Staphylococcus aureus small colony variant (SCV) with a minimal inhibitory concentration (MIC) of 0.06 µg/mL while it shows no activity against prototypical strains (MIC > 128 µg/mL). To expand the spectrum of activity of TO, the 3ß-hydroxyl group was substituted with an ethane-1,2-diamine, resulting in two diastereoisomers, TM-02 (C3-ß) and TM-03 (C3-α). These molecules are equally potent against prototypical S. aureus and E. coli strains (MIC 8 and 32 µg/mL, respectively), whereas TM-02 is more potent against SCV (MIC 0.5 µg/mL) and hyperpermeable E. coli strains (MIC 1 µg/mL). The differences in their modes of action were investigated. We used membrane vesicles to confirm the inhibition of the bacterial ATP synthase, the documented target of TO, and measured effects on bacterial cell membranes. Both molecules inhibited E. coli ATP synthase, with Ki values of 1.1 µM and 3.5 µM for TM-02 and TM-03, respectively, and the bactericidal effect of TM-02 was linked to ATP synthase inhibition. Furthermore, TM-02 had no major effect on the membrane fluidity and gradually reduced membrane potential. In contrast, TM-03 caused structural damages to membranes and completely disrupted the membrane potential (>90%). We were successful in broadening the spectrum of activity of TO. C3-ß-diastereoisomers may have more specific antibacterial action than C3-α.


Assuntos
Escherichia coli , Staphylococcus aureus , Tomatina/análogos & derivados , Antibacterianos/farmacologia , Trifosfato de Adenosina
6.
Molecules ; 28(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110854

RESUMO

High-performance liquid chromatography (HPLC) analysis of three commercial tomatine samples and another isolated from green tomatoes revealed the presence of two small peaks in addition to those associated with the glycoalkaloids dehydrotomatine and α-tomatine. The present study investigated the possible structures of the compounds associated with the two small peaks using HPLC-mass spectrophotometric (MS) methods. Although the two peaks elute much earlier on chromatographic columns than the elution times of the known tomato glycoalkaloids dehydrotomatine and α-tomatine, isolation of the two compounds by preparative chromatography and subsequent analysis by MS shows the two compounds have identical molecular weights, tetrasaccharide side chains, and MS and MS/MS fragmentation patterns to dehydrotomatine and α-tomatine. We suggest the two isolated compounds are isomeric forms of dehydrotomatine and α-tomatine. The analytical data indicate that widely used commercial tomatine preparations and those extracted from green tomatoes and tomato leaves consist of a mixture of α-tomatine, dehydrotomatine, an α-tomatine isomer, and a dehydrotomatine isomer in an approximate ratio of 81:15:4:1, respectively. The significance of the reported health benefits of tomatine and tomatidine is mentioned.


Assuntos
Solanum lycopersicum , Tomatina , Tomatina/química , Espectrometria de Massas em Tandem
7.
Biosci Biotechnol Biochem ; 87(6): 663-671, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36941129

RESUMO

α-Tomatine is a steroidal glycoalkaloid in tomato plants and degrades with ripening. The aglycone form, tomatidine, is reported to have beneficial effects. In this study, the ability of food-related microorganisms to produce tomatidine from α-tomatine was evaluated. A total of 11 strains of Aspergillus species belonging to the section Nigri exhibited tomatinase activity, and Aspergillus luchuensis JCM 22302 was selected for optimization due to its high activity in its mycelia, conidia, and non-mycotoxin-producing property. Next, using A. luchuensis JCM22302 conidia, the highest yield was obtained in a 24-h reaction with 50 m m of acetic acid-sodium acetate buffer (pH 5.5) at 37 °C. Similar to the tomato pathogen Fusarium oxysporum f. lyceopersici, the time course analysis suggested that A. luchuensis JCM 22302 removed the entire sugar moiety in a single step. Future research will focus on utilizing conidia for large-scale tomatidine production because of their high tolerance and manageability.


Assuntos
Aspergillus , Tomatina , Tomatina/química , Tomatina/metabolismo , Aspergillus/metabolismo
8.
Food Chem ; 391: 133261, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35640336

RESUMO

Discovery of new selective anticancer, anti-inflammatory, and anti-microbial agents is a crucial and necessary step to ensure a pipeline for innovative products to improve disease management. Several new bioactive agents derived from plants have been investigated and an example is the steroidal glycoalkaloid (SGA) class of natural products found in plants, investigated for their health-beneficial biological activities. Among them, α-tomatine is a SGA derived from the plant parts of unripe green tomatoes. In this review we aimed at searching for two different perspectives to study α-tomatine from green tomatoes, namely from its dual action point of view: as an anti-nutrient and as a health promoter. The aspects associated to its synthesis and degradation were considered. Finally, the current strategies for its extraction from natural sources and the methodologies commonly used for its identification and quantification were discussed.


Assuntos
Anti-Infecciosos , Solanum lycopersicum , Anti-Infecciosos/metabolismo , Anti-Inflamatórios/metabolismo , Humanos , Solanum lycopersicum/metabolismo , Tomatina/análogos & derivados , Tomatina/metabolismo
9.
Exp Mol Med ; 54(4): 493-502, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379934

RESUMO

Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) have been reported to exhibit immature embryonic or fetal cardiomyocyte-like phenotypes. To enhance the maturation of hESC-CMs, we identified a natural steroidal alkaloid, tomatidine, as a new substance that stimulates the maturation of hESC-CMs. Treatment of human embryonic stem cells with tomatidine during cardiomyocyte differentiation stimulated the expression of several cardiomyocyte-specific markers and increased the density of T-tubules. Furthermore, tomatidine treatment augmented the number and size of mitochondria and enhanced the formation of mitochondrial lamellar cristae. Tomatidine treatment stimulated mitochondrial functions, including mitochondrial membrane potential, oxidative phosphorylation, and ATP production, in hESC-CMs. Tomatidine-treated hESC-CMs were more sensitive to doxorubicin-induced cardiotoxicity than the control cells. In conclusion, the present study suggests that tomatidine promotes the differentiation of stem cells to adult cardiomyocytes by accelerating mitochondrial biogenesis and maturation and that tomatidine-treated mature hESC-CMs can be used for cardiotoxicity screening and cardiac disease modeling.


Assuntos
Células-Tronco Embrionárias Humanas , Cardiotoxicidade/etiologia , Diferenciação Celular , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Mitocôndrias , Miócitos Cardíacos/metabolismo , Tomatina/análogos & derivados
10.
Nutrients ; 14(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35267998

RESUMO

The steroidal alkaloid tomatidine is an aglycone of α-tomatine, which is abundant in tomato leaves and has several biological activities. Tomatidine has been reported to inhibit the growth of cultured cancer cells in vitro, but its anti-cancer activity in vivo and inhibitory effect against gastric cancer cells remain unknown. We investigated the efficacy of tomatidine using human gastric cancer-derived 85As2 cells and its tumor-bearing mouse model and evaluated the effect of tomatidine-rich tomato leaf extract (TRTLE) obtained from tomato leaves. In the tumor-bearing mouse model, tumor growth was significantly inhibited by feeding a diet containing tomatidine and TRTLE for 3 weeks. Tomatidine and TRTLE also inhibited the proliferation of cultured 85As2 cells. Microarray data of gene expression analysis in mouse tumors revealed that the expression levels of mRNAs belonging to the type I interferon signaling pathway were altered in the mice fed the diet containing tomatidine and TRTLE. Moreover, the knockdown of one of the type I interferon-stimulated genes (ISGs), interferon α-inducible protein 27 (IFI27), inhibited the proliferation of cultured 85As2 cells. This study demonstrates that tomatidine and TRTLE inhibit the tumor growth in vivo and the proliferation of human gastric cancer-derived 85As2 cells in vitro, which could be due to the downregulation of ISG expression.


Assuntos
Alcaloides , Solanum lycopersicum , Neoplasias Gástricas , Alcaloides/metabolismo , Alcaloides/farmacologia , Animais , Humanos , Interferons , Camundongos , Extratos Vegetais/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Tomatina/análogos & derivados
11.
PLoS Negl Trop Dis ; 15(11): e0009916, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762680

RESUMO

Tomatidine, a natural steroidal alkaloid from unripe green tomatoes has been shown to exhibit many health benefits. We recently provided in vitro evidence that tomatidine reduces the infectivity of Dengue virus (DENV) and Chikungunya virus (CHIKV), two medically important arthropod-borne human infections for which no treatment options are available. We observed a potent antiviral effect with EC50 values of 0.82 µM for DENV-2 and 1.3 µM for CHIKV-LR. In this study, we investigated how tomatidine controls CHIKV infectivity. Using mass spectrometry, we identified that tomatidine induces the expression of p62, CD98, metallothionein and thioredoxin-related transmembrane protein 2 in Huh7 cells. The hits p62 and CD98 were validated, yet subsequent analysis revealed that they are not responsible for the observed antiviral effect. In parallel, we sought to identify at which step of the virus replication cycle tomatidine controls virus infectivity. A strong antiviral effect was seen when in vitro transcribed CHIKV RNA was transfected into Huh7 cells treated with tomatidine, thereby excluding a role for tomatidine during CHIKV cell entry. Subsequent determination of the number of intracellular viral RNA copies and viral protein expression levels during natural infection revealed that tomatidine reduces the RNA copy number and viral protein expression levels in infected cells. Once cells are infected, tomatidine is not able to interfere with active RNA replication yet it can reduce viral protein expression. Collectively, the results delineate that tomatidine controls viral protein expression to exert its antiviral activity. Lastly, sequential passaging of CHIKV in presence of tomatidine did not lead to viral resistance. Collectively, these results further emphasize the potential of tomatidine as an antiviral treatment towards CHIKV infection.


Assuntos
Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Vírus Chikungunya/genética , Expressão Gênica/efeitos dos fármacos , Tomatina/análogos & derivados , Proteínas Virais/genética , Liberação de Vírus/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Proteômica , RNA Viral/genética , Tomatina/farmacologia , Células Vero , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
12.
Molecules ; 26(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34641551

RESUMO

Tomatidine has recently generated a lot of interest amongst the pharmacology, medicine, and biology fields of study, especially for its newfound activity as an antibiotic agent capable of targeting multiple strains of bacteria. In the light of its low natural abundance and high cost, an efficient and scalable multi-gram synthesis of tomatidine has been developed. This synthesis uses a Suzuki-Miyaura-type coupling reaction as a key step to graft an enantiopure F-ring side chain to the steroidal scaffold of the natural product, which was accessible from low-cost and commercially available diosgenin. A Lewis acid-mediated spiroketal opening followed by an azide substitution and reduction sequence is employed to generate the spiroaminoketal motif of the natural product. Overall, this synthesis produced 5.2 g in a single pass in 15 total steps and 15.2% yield using a methodology that is atom economical, scalable, and requires no flash chromatography purifications.


Assuntos
Antibacterianos/síntese química , Produtos Biológicos/síntese química , Tomatina/análogos & derivados , Antibacterianos/química , Produtos Biológicos/química , Estrutura Molecular , Tomatina/síntese química , Tomatina/química
13.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34639036

RESUMO

Considering the current dramatic and fatal situation due to the high spreading of SARS-CoV-2 infection, there is an urgent unmet medical need to identify novel and effective approaches for prevention and treatment of Coronavirus disease (COVID 19) by re-evaluating and repurposing of known drugs. For this, tomatidine and patchouli alcohol have been selected as potential drugs for combating the virus. The hit compounds were subsequently docked into the active site and molecular docking analyses revealed that both drugs can bind the active site of SARS-CoV-2 3CLpro, PLpro, NSP15, COX-2 and PLA2 targets with a number of important binding interactions. To further validate the interactions of promising compound tomatidine, Molecular dynamics study of 100 ns was carried out towards 3CLpro, NSP15 and COX-2. This indicated that the protein-ligand complex was stable throughout the simulation period, and minimal backbone fluctuations have ensued in the system. Post dynamic MM-GBSA analysis of molecular dynamics data showed promising mean binding free energy 47.4633 ± 9.28, 51.8064 ± 8.91 and 54.8918 ± 7.55 kcal/mol, respectively. Likewise, in silico ADMET studies of the selected ligands showed excellent pharmacokinetic properties with good absorption, bioavailability and devoid of toxicity. Therefore, patchouli alcohol and especially, tomatidine may provide prospect treatment options against SARS-CoV-2 infection by potentially inhibiting virus duplication though more research is guaranteed and secured.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Endorribonucleases/antagonistas & inibidores , SARS-CoV-2/enzimologia , Sesquiterpenos/farmacologia , Tomatina/análogos & derivados , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/farmacologia , COVID-19/virologia , Proteases 3C de Coronavírus/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Endorribonucleases/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2/efeitos dos fármacos , Tomatina/farmacologia , Proteínas não Estruturais Virais/metabolismo , Tratamento Farmacológico da COVID-19
14.
Steroids ; 176: 108933, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34695457

RESUMO

The steroidal glycoalkaloid α-tomatine (αTM) and its aglycone tomatidine (TD) are abundant in the skin of unripe green tomato and present in tomato leaves and flowers. They mainly serve as defensive agents to protect the plant against infections by insects, bacteria, parasites, viruses, and fungi. In addition, the two products display a range of pharmacological properties potentially useful to treat various human diseases. We have analyzed all known pharmacological activities of αTM and TD, and the corresponding molecular targets and pathways impacted by these two steroidal alkaloids. In experimental models, αTM displays anticancer effects, particularly strong against androgen-independent prostate cancer, as well as robust antifungal effects. αTM is a potent cholesterol binder, useful as a vaccine adjuvant to improve delivery of protein antigens or therapeutic oligonucleotides. TD is a much less cytotoxic compound, able to restrict the spread of certain viruses (such as dengue, chikungunya and porcine epidemic diarrhea viruses) and to provide cardio and neuro-protective effects toward human cells. Both αTM and TD exhibit marked anti-inflammatory activities. They proceed through multiple signaling pathways and protein targets, including the sterol C24 methyltransferase Erg6 and vitamin D receptor, both directly targeted by TD. αTM is a powerful regulator of the NFkB/ERK signaling pathway implicated in various diseases. Collectively, the analysis shed light on the multitargeted action of αTM/TD and their usefulness as chemo-preventive or chemotherapeutic agents. A novel medicinal application for αTM is proposed.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antiparasitários/farmacologia , Inseticidas/farmacologia , Solanum lycopersicum/química , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antiparasitários/química , Antiparasitários/isolamento & purificação , Humanos , Inseticidas/química , Inseticidas/isolamento & purificação , Conformação Molecular , Tomatina/análogos & derivados , Tomatina/química , Tomatina/isolamento & purificação , Tomatina/farmacologia
15.
Mediators Inflamm ; 2021: 4544294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531702

RESUMO

Tomatidine, which is isolated from green tomato, can ameliorate inflammation and oxidative stress in cells and animal experiments and has been shown to improve airway inflammation in a murine model of asthma. Here, we investigated whether tomatidine can ameliorate acute lung injury in mice. Mice were given tomatidine by intraperitoneal injection for 7 consecutive days, and then, lung injury was induced via intratracheal instillation of lipopolysaccharide (LPS). Tomatidine reduced inflammatory cytokine expressions in bronchoalveolar lavage fluid (BALF), attenuated neutrophil infiltration in the BALF and lung tissue, increased superoxide dismutase activity and glutathione levels, and alleviated myeloperoxidase expression in the lung tissue of mice with lung injury. Tomatidine also decreased inflammatory cytokine and chemokine gene expression in inflammatory lungs and attenuated the phosphorylation of mitogen-activated protein kinase and nuclear factor kappa B. Furthermore, tomatidine enhanced the production of heme oxygenase-1, decreased the secretion of inflammatory cytokines and chemokines in LPS-stimulated lung epithelial cells, and attenuated THP-1 monocyte adhesion. Our findings suggest that tomatidine attenuates oxidative stress and inflammation, improving acute lung injury in mice.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Inflamação , Pneumonia/tratamento farmacológico , Tomatina/análogos & derivados , Células A549 , Animais , Líquido da Lavagem Broncoalveolar , Adesão Celular , Quimiocinas/metabolismo , Citocinas/metabolismo , Glutationa/metabolismo , Humanos , Lipopolissacarídeos/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Subunidade p50 de NF-kappa B/metabolismo , Neutrófilos/metabolismo , Estresse Oxidativo , Peroxidase/biossíntese , Superóxido Dismutase/metabolismo , Tomatina/farmacologia
16.
FEBS Open Bio ; 11(9): 2647-2654, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34347928

RESUMO

Cerebral ischemia is one of the leading causes of human mortality and disability worldwide. The treatment of cerebral ischemia is refractory due to its short therapeutic window and lack of effective clinical drugs. Mitophagy, the autophagic elimination of damaged mitochondria, attenuates neuronal injury in cerebral ischemia, indicating the potential of mitophagy inducers as therapies for cerebral ischemia. We previously determined that, by enhancing autophagy flux, the steroidal alkaloid tomatidine can function as a neuroprotective agent against ischemic injury. However, its effects on mitophagy remain unknown. For this purpose, neuroblastoma cell lines Neuro-2a and SH-SY5Y were subjected to ischemic injury induced by oxygen-glucose deprivation/reperfusion (OGD/R) and then treated with tomatidine. OGD/R induced a general decrease of cellular contents, and this study revealed that tomatidine had no impact on mitophagy. In addition, tomatidine did not affect mitochondrial contents, including translocase of outer mitochondrial membrane 20 and voltage-dependent anion channel 1, in either OGD/R-treated or intact SH-SY5H cells. Our results indicate that tomatidine exhibits its neuroprotective effects by enhancing autophagy, but in a potentially mitophagy-independent manner, and provide insights for further investigation into its mechanism(s) and potential therapeutic use against cerebral ischemia.


Assuntos
Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Tomatina/análogos & derivados , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/etiologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Glucose/metabolismo , Humanos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Oxigênio/metabolismo , Tomatina/farmacologia
17.
Molecules ; 26(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063803

RESUMO

The intake of tomato glycoalkaloids can exert beneficial effects on human health. For this reason, methods for a rapid quantification of these compounds are required. Most of the methods for α-tomatine and dehydrotomatine quantification are based on chromatographic techniques. However, these techniques require complex and time-consuming sample pre-treatments. In this work, HPLC-ESI-QqQ-MS/MS was used as reference method. Subsequently, multiple linear regression (MLR) and partial least squares regression (PLSR) were employed to create two calibration models for the prediction of the tomatine content from thermogravimetric (TGA) and attenuated total reflectance (ATR) infrared spectroscopy (IR) analyses. These two fast techniques were proven to be suitable and effective in alkaloid quantification (R2 = 0.998 and 0.840, respectively), achieving low errors (0.11 and 0.27%, respectively) with the reference technique.


Assuntos
Modelos Químicos , Solanum lycopersicum/química , Tomatina/análogos & derivados , Calibragem , Cromatografia Líquida de Alta Pressão/métodos , Análise Multivariada , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrofotometria Infravermelho/métodos , Espectrometria de Massas em Tandem/métodos , Termogravimetria/métodos , Tomatina/análise
18.
Plant Cell Physiol ; 62(5): 775-783, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34100555

RESUMO

Tomato (Solanum lycopersicum) contains α-tomatine, a steroidal glycoalkaloid that contributes to the plant defense against pathogens and herbivores through its bitter taste and toxicity. It accumulates at high levels in all the plant tissues, especially in leaves and immature green fruits, whereas it decreases during fruit ripening through metabolic conversion to the nontoxic esculeoside A, which accumulates in the mature red fruit. This study aimed to identify the gene encoding a C-27 hydroxylase that is a key enzyme in the metabolic conversion of α-tomatine to esculeoside A. The E8 gene, encoding a 2-oxoglutalate-dependent dioxygenase, is well known as an inducible gene in response to ethylene during fruit ripening. The recombinant E8 was found to catalyze the C-27 hydroxylation of lycoperoside C to produce prosapogenin A and is designated as Sl27DOX. The ripe fruit of E8/Sl27DOX-silenced transgenic tomato plants accumulated lycoperoside C and exhibited decreased esculeoside A levels compared with the wild-type (WT) plants. Furthermore, E8/Sl27DOX deletion in tomato accessions resulted in higher lycoperoside C levels in ripe fruits than in WT plants. Thus, E8/Sl27DOX functions as a C-27 hydroxylase of lycoperoside C in the metabolic detoxification of α-tomatine during tomato fruit ripening, and the efficient detoxification by E8/27DOX may provide an advantage in the domestication of cultivated tomatoes.


Assuntos
Frutas/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Tomatina/análogos & derivados , Frutas/crescimento & desenvolvimento , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Oxigenases de Função Mista/genética , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saponinas/metabolismo , Especificidade por Substrato , Tomatina/metabolismo
19.
Fitoterapia ; 152: 104911, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33901572

RESUMO

Targeting the autophagy process is considered to be a promising new strategy for drug treatment of ovarian cancer. α-Tomatine, a steroidal alkaloid extracted, is mainly isolated from leaves, roots and immature green tomatoes. α-Tomatine has biological activities such as anticancer, antioxidative and anti-inflammatory. The study aimed to explore the effects of α-tomatine on proliferation, apoptosis and autophagy and the underlying mechanisms in ovarian cancer Skov3 cells. After treatment with different concentrations of α-tomatine (0, 0.75, 1 and 1.5 µM) in Skov3 cells for 24 h, proliferation was determined by the CCK-8 assay, and apoptosis was detected by flow cytometric analysis. Autophagy in cells was determined by the number of fluorescent spots using confocal fluorescence microscopy after mRFP-GFP-LC3 transfection. The relationship between autophagy and apoptosis was proved by Beclin-1 overexpression. The protein expression levels were tested by western blotting. The results demonstrated that α-tomatine effectively repressed proliferation, exerted a proapoptotic effect and inhibited early-stage autophagy in Skov3 cells in a dose- and time-dependent manner. Additionally, Beclin-1 overexpression significantly suppressed α-tomatine-treated apoptosis in Skov3 cells, indicating that α-tomatine inhibits autophagy to induce apoptosis. We also found α-tomatine inhibited the protein expression levels of PI3K/Akt/mTOR signaling pathway. However, the autophagy inhibition of α-tomatine could be reversed obviously by Beclin-1 overexpression. Taken together, α-tomatine inhibited autophagy through Beclin-1. Our study suggests that α-tomatine, as a novel early-stage autophagy inhibitor, might be a potential drug for further treatment of ovarian cancer by inhibiting proliferation and promoting apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Tomatina/análogos & derivados , Linhagem Celular Tumoral , Feminino , Humanos , Solanum lycopersicum/química , Estrutura Molecular , Neoplasias Ovarianas/tratamento farmacológico , Transdução de Sinais , Tomatina/farmacologia
20.
Front Cell Infect Microbiol ; 11: 617917, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747979

RESUMO

Azoles such as posaconazole (Posa) are highly potent against Trypanosoma cruzi. However, when tested in chronic Chagas disease patients, a high rate of relapse after Posa treatment was observed. It appears that inhibition of T. cruzi cytochrome CYP51, the target of azoles, does not deliver sterile cure in monotherapy. Looking for suitable combination partners of azoles, we have selected a set of inhibitors of sterol and sphingolipid biosynthetic enzymes. A small-scale phenotypic screening was conducted in vitro against the proliferative forms of T. cruzi, extracellular epimastigotes and intracellular amastigotes. Against the intracellular, clinically relevant forms, four out of 15 tested compounds presented higher or equal activity as benznidazole (Bz), with EC50 values ≤2.2 µM. Ro48-8071, an inhibitor of lanosterol synthase (ERG7), and the steroidal alkaloid tomatidine (TH), an inhibitor of C-24 sterol methyltransferase (ERG6), exhibited the highest potency and selectivity indices (SI = 12 and 115, respectively). Both were directed to combinatory assays using fixed-ratio protocols with Posa, Bz, and fexinidazole. The combination of TH with Posa displayed a synergistic profile against amastigotes, with a mean ΣFICI value of 0.2. In vivo assays using an acute mouse model of T. cruzi infection demonstrated lack of antiparasitic activity of TH alone in doses ranging from 0.5 to 5 mg/kg. As observed in vitro, the best combo proportion in vivo was the ratio 3 TH:1 Posa. The combination of Posa at 1.25 mpk plus TH at 3.75 mpk displayed suppression of peak parasitemia of 80% and a survival rate of 60% in the acute infection model, as compared to 20% survival for Posa at 1.25 mpk alone and 40% for Posa at 10 mpk alone. These initial results indicate a potential for the combination of posaconazole with tomatidine against T. cruzi.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Doença de Chagas/tratamento farmacológico , Humanos , Camundongos , Tomatina/análogos & derivados , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...